首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12292篇
  免费   1206篇
  国内免费   860篇
电工技术   65篇
技术理论   1篇
综合类   550篇
化学工业   7799篇
金属工艺   604篇
机械仪表   151篇
建筑科学   177篇
矿业工程   181篇
能源动力   796篇
轻工业   341篇
水利工程   65篇
石油天然气   359篇
武器工业   1095篇
无线电   288篇
一般工业技术   1221篇
冶金工业   265篇
原子能技术   137篇
自动化技术   263篇
  2024年   12篇
  2023年   185篇
  2022年   188篇
  2021年   304篇
  2020年   368篇
  2019年   368篇
  2018年   380篇
  2017年   362篇
  2016年   372篇
  2015年   520篇
  2014年   909篇
  2013年   833篇
  2012年   917篇
  2011年   1146篇
  2010年   927篇
  2009年   969篇
  2008年   794篇
  2007年   797篇
  2006年   686篇
  2005年   627篇
  2004年   479篇
  2003年   499篇
  2002年   298篇
  2001年   228篇
  2000年   214篇
  1999年   183篇
  1998年   129篇
  1997年   92篇
  1996年   100篇
  1995年   76篇
  1994年   61篇
  1993年   56篇
  1992年   87篇
  1991年   40篇
  1990年   35篇
  1989年   34篇
  1988年   10篇
  1987年   17篇
  1986年   15篇
  1985年   8篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1976年   1篇
  1974年   1篇
  1960年   1篇
  1959年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 27 毫秒
1.
Ceria (CeO2) particles are prevalent polishing abrasive materials. Trivalent lanthanide ions are the popular category of dopants for enriched surface defects and thus improved physicochemical properties, since they are highly compatible with CeO2 lattices. Herein, a series of dendritic-like mesoporous silica (D-mSiO2)-supported samarium (Sm)-doped CeO2 nanocrystals were synthesized via a facile chemical precipitation method. The relation of the structural characteristics and chemical mechanical polishing (CMP) performances were investigated to explore the effect of Sm-doping amounts on the D-mSiO2/SmxCe1?xO2?δ (x = 0–1) composite abrasives. The involved low-modulus D-mSiO2 cores aimed to eliminate surface scratch and damage, resulting from the optimized contact behavior between abrasives and surfaces. The trivalent cerium (Ce3+) and oxygen vacancy (VO) at CeO2 surfaces were expected to be reactive sites for the material removal process over SiO2 films. The optimal oxide-CMP performances in terms of removal efficiency and surface quality were achieved by the 40% Sm-doped composite abrasives. It might be attributed to the high Ce3+ and VO concentrations and the enhancement of tribochemical reactivity between CeO2SiO2 interfaces. Furthermore, the relationship between the surface chemistry, polishing performance as well as the actual role in oxide-CMP of the D-mSiO2/SmxCe1?xO2?δ abrasives were also discussed.  相似文献   
2.
This paper was intended to delineate numerical research for hydrogen catalytic combustion over a circular cylinder. The wire/rod-type catalytic reactor is a simple geometry reactor with an economical design with less pressure loss. For the single rod in the reaction channel, the flow characteristic and the difference of conversion efficiency between non-gas-phase reaction and gas-phase reaction have been delineated in the present study. The flow field and the chemical reactions were numerically modeled using 2D Large Eddy Simulation combined with the gas-phase and surface reaction mechanisms. The results show that the current numerical simulation has been validated to precisely predict the vortex shedding and its frequency in the cold flows. Despite the variation trends being dominated by the upstream flow, the vortex shedding phenomena were affected by the flue gas generated from the rod surface. It can be seen from the linear relationship between the vortex shedding frequency of reacting flow and Reynolds Number. It is noted that the vortex shedding vanished if the gas-phase reaction was ignited in the reaction channel. In addition, the geometric modified conversion efficiency was proposed to delineate an indicator that could be potential for the optimization of rod-type catalytic reactor. In summary, the fundamental study of a rod in a 2D flow channel can provide information for optimizing the catalytic design or the rod array arrangement in the reactor. Moreover, the rod can also be a partial catalytic flame holder to ignite and stabilize the gas-phase reaction. The obtained results could be the potential for practical applications of rod-type catalytic combustion, catalytic gas turbine, hydrogen generation, partially catalytic reaction flame holder, and other catalytic reactions that can be appreciated.  相似文献   
3.
Developing highly efficient and stable noble metal-free electrocatalysts with excellent catalytic surface for oxygen evolution reactions (OER) is an essential link for stimulating hydrogen generation from water electrolysis. Herein, the scalloped nickel/iron vanadium oxide coated vanadium dioxide (named as VO2@NFVO) has been successfully decorated via a urea-induced chemical etching-reconstruction process in the alkaline solution containing Fe2+ and Ni2+. Corresponding experimental measurements clearly show that favorable chemical etching occurs with the formation of new phases (eg, Ni3V2O8, FeVO4), which make it expose a large number of active sites and regulate the electron density of the active center, thus thereby dramatically enhancing the electrocatalytic performance by promoting electron transfer and optimizing the adsorption energy of reaction intermediates. Under optimized condition, the obtained VO2@NFVO delivers excellent activity merely with smaller overpotential of 290 mV at 10 mA cm?2, outperforming benchmark RuO2 catalyst in an alkaline solution. Moreover, its superior durability is verified by chronoamperometry testing. This simple etching-reconstruction strategy opens a new avenue for the preparation of vanadium-based electrocatalysts.  相似文献   
4.
Reformed exhaust gas recirculation technology has attracted great attention in internal combustion engines. A platform of an exhaust gas-fuel reformer connected with the marine LNG engine was set up for generating on-board hydrogen. Based on the platform, effects of the methane to oxygen ratio (M/O) and reformed exhaust gas ratio (REG) from the reformer and excess air ratio (λ) from the engine on the components, hydrogen yield, thermal efficiency and reforming process of the reformer were experimentally investigated. Results shown that hydrogen-rich gases (reformate) can be generated by reforming the mixture of engine exhaust gas (about 400 °C) and methane supplied via the reformer with Ni/Al2O3 catalyst, and the hydrogen concentration of reformate was between 6.2% and 12.6% by volume. The methane supplied rate and λ affected the components and temperature of the reactant in the reformer, while REG changed the gas hour space velocity during the exhaust gas-fuel reforming processes, resulting in the difference in the components of the reformate and thermal efficiency. At the present experimental condition, the highest H2 concentration reformate was generated under the M/O of 2.0, λ of 1.55 and REG of 6%.  相似文献   
5.
Conjugated polymers have emerged as a promising class of organic photocatalysts for photocatalytic hydrogen evolution from water splitting due to their adjustable chemical structures and electronic properties. However, developing highly efficient organic polymer photocatalysts with high photocatalytic activity for hydrogen evolution remains a significant challenge. Herein, we present an efficient approach to enhance the photocatalytic performance of linear conjugated polymers by modifying the surface chemistry via introducing a hydrophilic adenine group into the side chain. The adenine unit with five nitrogen atoms could enhance the interaction between the surface of polymer photocatalyst and water molecules through the formation of hydrogen bonding, which improves the hydrophilicity and dispersity of the resulting polymer photocatalyst in the photocatalytic reaction solution. In addition, the strong electron-donating ability of adenine group with plentiful nitrogen atoms could promote the separation of light-induced electrons and holes. As a result, the adenine-functionalized conjugated polymer PF6A-DBTO2 shows a high photocatalytic activity with a hydrogen evolution rate (HER) of 25.21 mmol g?1 h?1 under UV-Vis light irradiation, which is much higher than that of its counterpart polymer PF6-DBTO2 without the adenine group (6.53 mmol g?1 h?1). More importantly, PF6A-DBTO2 without addition of a Pt co-catalyst also exhibits an impressive HER of 21.93 mmol g?1 h?1 under visible light (λ > 420 nm). This work highlights that it is an efficient strategy to improve the photocatalytic activity of conjugated polymer photocatalysts by the modification of surface chemistry.  相似文献   
6.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
7.
The generation of peptidomimetic substructures for medicinal chemistry purposes requires effective and divergent synthetic methods. We present in this work an efficient flow process that allows quick modulation of reagents for Joullié-Ugi multicomponent reaction, using spiroindolenines as core motifs. This sterically hindered imine equivalent could successfully be diversified using various isocyanides and amino acids in generally good space-time yields. A telescoped flow process combining interrupted Fischer reaction for spiroindolenine synthesis and subsequent Joullié-Ugi-type modification resulted in product formation in very good overall yield in less than 2 hours compared to 48 hours required in batch mode. The developed protocol can be seen as a general tool for rapid and facile generation of peptidomimetic compounds. We also showcase preliminary biological assessments for the prepared compounds.  相似文献   
8.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
9.
In this study, pyrolysis of tomato waste has been performed in fixed bed tubular reactor at 500 °C, both in absence and presence of Cu/Al2O3 catalyst. The influences of heating rate, catalyst preparation method and catalyst loading on bio-oil yields and properties were examined. According to pyrolysis experiments, the highest bio-oil yield was obtained as 30.31% with a heating rate of 100 °C/min, 5% Cu/Al2O3 catalyst loading ratio and co-precipitation method. Results showed that the catalysts have strong positive effect on bio-oil yields. Bio-oil quality obtained from fast catalytic pyrolysis was more favorable than that obtained from non-catalytic and slow catalytic pyrolysis.  相似文献   
10.
The European Federation for Medicinal Chemistry (EFMC) created the Young Scientists Network (YSN) to support early-career medicinal chemists and chemical biologists. By doing this, it addressed the rapid changes taking place in the scientific community and in our society, such as the rise of social media, the evolution of the gender balance in the scientific population, and educational needs. Creating the YSN was also a way to ensure that the next generation of scientists would contribute to shaping EFMC's strategy, while recognizing and addressing their needs. The YSN was set up as a very dynamic concept, and has now developed to the point where its impact is evident. The activities it promotes complement EFMC's community support and scientific opportunities, rejuvenating the Federation and preparing it for the future. It also provides opportunities for many brilliant young scientists, who do not hesitate to invest time and energy in supporting our community and shaping their own future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号